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Important ecological processes are expressed in 
and are affected by the vertical structure of forest canopies.

Chief among these processes is the carbon cycle, the uncer-
tainties in which limit understanding of climatic trends over
the next century. Changes in vegetation structure, induced by
climatic conditions, natural disturbance, and human activi-
ties, can have substantial impacts on carbon storage and the
exchange of carbon dioxide (CO

2
), water vapor, and heat

with the atmosphere (Law et al. 2001), which can modify 
climate (Pielke and Avissar 1990).

Trees store carbon in their biomass. Fossil fuel burning and
deforestation, which release carbon as CO

2
into the atmo-

sphere, are believed to be the two dominant contributing
mechanisms to the rise in atmospheric CO

2
over the last 50

years. Forest biomass also has a potential role in reabsorbing
some of the excess CO

2
, yet the dynamic responses of carbon

fluxes to climate changes are still poorly understood. Knowl-
edge of the level of carbon stored in forest biomass globally
is highly uncertain (within about 40% of the true value;
Waring and Running 1998), as is the spatiotemporal 
description of carbon flux associated with changes in above-

ground biomass. Improved quantification of biomass will help
reduce uncertainty in estimates of magnitudes, rates, and
longevity of carbon sequestration by terrestrial ecosystems
(Law et al. forthcoming), and therefore will enable better
understanding of the global carbon cycle. In this article, we
demonstrate quantification of, and magnitudes of uncer-
tainties in, carbon sequestration; we also discuss scaling issues
and the need for improving model estimates with data 
assimilation.

Biomass may be most robustly determined from remotely
sensed, three-dimensional (3-D) forest structure (Lefsky et al.
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Forest Attributes from Radar
Interferometric Structure 
and Its Fusion with Optical 
Remote Sensing
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The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on 
important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the
vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential
for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by
two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or
multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can
enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments
will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest 
designs for future spaceborne strategies for measuring global vegetation structure.
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1999, Drake et al. 2002, Treuhaft et al. 2003). Estimates of this
3-D structure result from augmenting two-dimensional 
(2-D) remote sensing with vertical structure measurements.
Accurate 3-D structure estimates over regions and conti-
nents are needed to determine the role of terrestrial ecosys-
tems in the global carbon cycle. Regrowth and the consequent
biomass accumulation following stand-replacing distur-
bances, such as fire and deforestation, induce vertical-
structure changes potentially accessible to 3-D remote sens-
ing. Other forest disturbances, such as insect outbreaks, wind-
throw, and selective timber harvesting, present more subtle
structural signatures that may also be detected by new 3-D 
remote sensing approaches (Marchak 1995). Neither the rates
and extents of thinning-type disturbances nor the patterns of
forest recovery are well known at large spatial scales. These 
disturbances, however, play critical roles in determining the
carbon balance and ecological functioning of forest eco-
systems (Waring and Running 1998, Law et al. 2003).

Within the last decade, experimental demonstrations of the
3-D techniques of interferometric synthetic aperture radar 
(InSAR) (Graham 1974) and lidar ([laser] light detecting
and ranging) (Gardner 1992) have suggested the possibility
of remotely sensing global 3-D vegetation structure. Demon-
strations of vegetation-structure sensitivity and estimation in-
clude InSAR (Hagberg et al. 1995, Treuhaft et al. 1996, 2002,
Cloude and Papathanassiou 1998) and lidar (Nilsson 1996,
Lefsky et al. 1999, Drake et al. 2002) experiments. Both InSAR
and lidar 3-D techniques show potential to measure canopy
attributes accurately in the vertical as well as horizontal 
directions. This article explains how InSAR works and 
describes its potential to measure canopy structure in three
dimensions, primarily for global forest vegetation profiling.

Other articles describe the ecological applications of lidar
(Lefsky et al. 2002), of noninterferometric synthetic aperture
radar (SAR) (Waring et al. 1995), and of multispectral 
(Cohen and Goward 2004) and hyperspectral (Ustin et al.
2004) optical remote sensing. The 3-D biophysical descrip-
tion of forests is complex, and its global description will no
doubt require more than one remote sensing technique. For
that reason, this discussion has a secondary focus on In-
SAR’s enhanced utility when combined with other sensors
in so-called data fusion.

From 2-D to 3-D remote sensing: InSAR and lidar
First we contrast generic 2-D, power-based remote sensing 
approaches with the additional measurements made to 
observe the third, vertical dimension with InSAR. We also
compare the capabilities and limitations of InSAR and lidar
to establish a context for InSAR 3-D remote sensing. In either
microwave SAR or optical 2-D remote sensing, the strength
of the signal (power) received by a sensor is the sum of the
powers attributed to each canopy element.Active sensors, such
as radar and lidar, send out a pulse of radiation in selected
wavelengths and measure the power of the reflected signal.
Passive sensors (multispectral and hyperspectral) rely on 
the sun’s energy and capture the changes in radiance (power
at optical wavelengths) of a few or many spectral bands 
that are associated with the properties of the soil surface and
vegetation.

The 2-D signals from two vegetation elements, such as a 
collection of leaves and twigs (depicted as green hexagons),
originate at two different heights above the ground surface 
(figure 1a). The power sent by each vegetation element to the
sensor (shown as vectors in the inset boxes) depends on how
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Figure 1. Distinction between two-dimensional (2-D) and three-dimensional (3-D) remote sensing of canopy elements.
(a) 2-D: The return signals to a sensor from short and tall canopy elements, depicted as green hexagons above the forest floor,
contribute to the total signal with information only on the strengths of the canopy elements, not their altitudes above the 
surface. (b) 3-D: With signals acquired at two ends of a baseline, the vertical location of canopy elements can be detected.
The length of the vectors (within the boxes) indicates the power of the signal returned from each element; departure in angle
from horizontal is proportional to path length 1 minus path length 2, which is proportional to the height above the surface,
as well as to the InSAR phase for each element.
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individual structures within the element redirect radiation to-
ward the sensor, as well as the number of scattering structures
per unit volume (number density). If we could somehow la-
bel the vertical position from which the power of each element
originated, we would have a measurement that directly de-
pends on number density profile, which correlates with bio-
physical densities of interest to ecologists (e.g., leaf area or mass
density). Because the powers from each element add together
in the total-power signal without a clear vertical-position 
label (indicated with horizontal vectors, which are added in
figure 2), the vertical position of each element’s number den-
sity is lost when blended into the total power 2-D measure-
ment. That is, profiles cannot be directly estimated.

Beyond received power, InSAR (Treuhaft et al. 1996, Rosen
et al. 2000) and lidar (Lefsky et al. 2002) each measure some-
thing more, a vertical label of sorts, which can be used to 
estimate properties in the third dimension. InSAR senses the
heights of the vegetation elements via the interferometric
phases (explained in the next section). Lidar senses the round-
trip travel time associated with the power from vegetation 
elements, which also depends on vertical position.

The characteristics that differentiate the two 3-D tech-
niques are spatiotemporal coverage and accuracy. Microwaves,
which make radar images, penetrate clouds and can instan-
taneously cover large track widths (swaths) on the earth of
about 80 kilometers (km) with current technology.The Shut-
tle Radar Topography Mission (SRTM, a spaceborne InSAR
mission in 2000) (Rabus et al. 2003) provided gapless global,
fixed-baseline InSAR coverage between the latitudes of ±60
degrees in 11 days. Although its primary mission was topo-
graphic, SRTM was the first seamless, global, spaceborne
mission directly sensitive to 3-D vegetation structure. Plans
for the repeat-track InSAR operation of the Advanced Land
Observing Satellite (or ALOS, to be launched in 2004) (Igarashi
2001) make large-swath, all-weather, spaceborne InSAR pos-
sible in the near future. Because a spaceborne lidar, such as
the previously proposed Vegetation Canopy Lidar (VCL)
(Hofton et al. 2002), would acquire data only in clear condi-
tions and have a swath width less than 100 meters (m), only
about 2% of the globe could be sampled annually, so that 
gapless global coverage using lidar would require 50 years.
A lidar used only in part for vegetation, now flying on 
the Ice, Cloud, and Land Elevation Satellite (or ICESat), has
similar swath characteristics (Zwally et al. 2002). The biggest 
advantage of InSAR over lidar is in the tropics, which account
for about 45% of the world’s forest biomass (Schlesinger
1991), because in some tropical locations, cloud cover is so
extensive that optical sensors may not acquire data as often
as once per month, and, in some cases, may acquire data less
than once per year (Asner 2001).

On the other hand, lidar’s profiling accuracy is superior to
that of InSAR.Although a detailed comparison of the profiling
accuracy of each technique has yet to be done, validations of
InSAR (Treuhaft et al. 2002) and lidar (Harding et al. 2001)
with respective field measurements show that lidar captures
all salient features of the vertical profiles, while InSAR 

captures only dominant features, smoothing over some 
features and producing more coarse profiles. Current InSAR
lateral resolution for profiles is about 0.25 to 1 hectare (ha)
(100 m ´ 100 m), while the VCL lateral resolution is of the 
order of 0.05 ha. Moreover, lidar can achieve its higher 
accuracy with a single measurement from one sensor; InSAR
requires more than one measurement and possibly more
than one sensor, and in most cases it produces less accurate
vertical and horizontal resolution than lidar.With current tech-
nology, InSAR’s potential for global spatiotemporal coverage
exceeds that of lidar by approximately three orders of mag-
nitude, but it comes at the expense of spaceborne hardware
costs and vertical profile accuracy. Ideally, global InSAR and
lidar can be combined to optimize spatiotemporal coverage
and accuracy.

3-D remote sensing with InSAR
InSAR was originally conceived as a bare-surface topography
tool (Graham 1974), but the rich signatures of 3-D vertical
complexity in InSAR data soon prompted interest in InSAR
as a vegetation structure tool for ecosystem monitoring.
InSAR draws from a long history of the use of interferome-
try to measure the structure of objects. In astronomy, for
example, interferometric measurements of the structure of
celestial objects date from the early part of the 20th century
to the present (Thompson et al. 1986). The capability of
InSAR to estimate vegetation structure follows from its 
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Figure 2. Interpreting the signal from two canopy ele-
ments with InSAR. Assuming the same vertical placement
of elements as in figure 1, the phases f1 and f2 are similar
to the insets in figure 1b and proportional to the height of
each element above the ground. Power1 is the amplitude
from the lower element (length of the vector at angle f1

to the horizontal and the length of the horizontal power
vector on the bottom), and Power2 is the amplitude from
the upper element. The amplitude of the total interfero-
metric signal, signified by the vector’s length, is smaller
than the sum of powers shown at the bottom because
canopy elements at different heights add vectorially in 
InSAR. The total InSAR phase, ftotal, is between f1 and f2.
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satisfying two criteria, which, we suggest, any set of remote
sensing observations must meet to determine a given terres-
trial attribute: The observations must (1) be sensitive to
changes in that attribute and (2) yield unambiguous estimates
of the parameters describing the attribute. If changes in dis-
tinct attributes of land surfaces induce similar signals, which
may be misinterpreted, criterion 1 is met but criterion 2 is not.
The descriptions of InSAR in the next sections show that 
single-baseline InSAR meets criterion 1 for 3-D vegetation
structure, and several types of multiple-observation InSAR
meet criteria 1 and 2. Both performance criteria must be
met to remotely sense forest structure from space.

Criterion 1: InSAR’s sensitivity to vegetation profiles. A radar
interferometer has two sensors, or receivers, spatially separated
at each end of a baseline (figure 1b). Two receivers make a
“fixed baseline.” Fixed-baseline InSAR has been demonstrated
from the air with the NASA airborne synthetic aperture radar
(AIRSAR) (Treuhaft et al. 1996, Treuhaft and Siqueira 2000,
Slatton et al. 2001) and from space with SRTM (Rabus et al.
2003). In contrast, “repeat-track” InSAR synthesizes a base-
line from a receiver flown repeatedly over an area (Hagberg
et al. 1995, Wegmüller and Werner 1997, Papathanassiou
and Cloude 2001). Platforms used in spaceborne repeat-
track vegetation experiments include the Shuttle Imaging
Radar (Cloude and Papathanassiou 1998) and JERS-1 (Japan-
ese Earth Resource Satellite) and European Remote Sensing
(ERS) satellites (Luckman et al. 2000, Pulliainen et al. 2003,
Wagner et al. 2003).

For either fixed-baseline or repeat-track InSAR, there are
two interferometric observations per baseline, the InSAR
phase and amplitude. The phase is proportional to the path
length difference from the vegetation element to each 
receiver, path length 1 minus path length 2 (figure 1b). This
path length difference is in turn proportional (to a close 
approximation) to the vegetation’s height above the surface,

that is, path length 1 minus path length 2 is greater for the
higher vegetation element in the figure. Extending the base-
line accentuates the differences in phase between altitudes. The
phase is the vertical-position label with which each vegetation
element’s contribution enters the total InSAR signal. The
amplitude for each element is the same as the radar power for
that element (figure 1a), and it depends on the power due 
to the elements as seen through the intervening forest. Note,
however, that the InSAR signals (designated by vectors in
inset boxes in figure 1b) depart from the horizontal with 
angles proportional to the InSAR phase, or height, above the
ground surface; as before, the length of each vector expresses
the power. (The fact that InSAR signals can be represented and
added vectorially is a result of electromagnetic propagation
and signal processing [Rodriguez and Martin 1992, Treuhaft
et al. 1996].)

These vectors add quite differently (see the vector dia-
gram, figure 2) from the 2-D linear case (the horizontal line
at the bottom of figure 2). The two vegetation elements, with
altitudes and amplitudes as in figures 1a and 1b, have InSAR
phases f

1
and f

2
in figure 2. The vector sum, or the total 

InSAR observation resulting from these two elements, has a
phase, f

total
, between f

1
and f

2
. The ratio of the total InSAR

amplitude to the 2-D total power (coherence) is always less
than 1. A signal coming from a tall canopy is more “inco-
herent” than one coming from a shorter one. Thus, interfer-
ometry is sensitive in two ways to the vertical extent of
vegetation: The InSAR phase generally increases, while the 
coherence decreases, the more vertically distributed the 
vegetation.

Criterion 2: InSAR’s capability to estimate vegetation. The 
interferometric phase and coherence respond to the vertical
distribution of vegetation, but many different element 
combinations could produce the same total InSAR amplitude
and phase (figure 2). This means that while single-baseline 
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Figure 3. Comparison of field (measured, dark rectangles) and remotely sensed (estimated, crosses)
tree heights from single-baseline polarimetric InSAR at Oberpfaffenhofen, Germany. The first eight
stands are evergreen coniferous; the last six are deciduous broadleaf. Vertical lines represent one
standard error. Reprinted from Papathanassiou and Cloude (2001), with permission. © 2001 Insti-
tute of Electrical and Electronics Engineers.



InSAR depends on structure profiles (criterion 1)—each 
element has entered into the signal with its phase, or altitude
label—it cannot estimate the vertical vegetation profiles
ecologists need (criterion 2). The reason for failing criterion
2 is that four parameters (the power and altitude of each veg-
etation element) cannot be extracted with only two single-
baseline observations (phase and coherence).The number of
profile-sensitive interferometric observations must match
or exceed the number of parameters needed to describe the
profile. Profiles can be estimated only when the observation
set is expanded beyond single-baseline InSAR.

Multiple-polarization (the vector direction of the electric
field in a plane perpendicular to its direction of propagation),
multiple-frequency, or multiple-baseline observations each 
enable some level of profile estimation (heights or full 
profiles). To see how the profile information is recovered, think
of each of the altitudes of our two vegetation elements as dif-
ferent colors of paint. Each color is concealed in a closed
can. In this analogy, a single InSAR measurement corre-
sponds to a given mixture of the colors, say a 1:2 ratio from
the two cans (the single vector diagram of figure 2 is one mix-
ture of altitudes). If can A contains red and can B blue, then
the 1:2 mixture would be violet. Changing the polarization,
frequency, or baseline in a known way systematically changes
the mixture of altitudes, which is like changing the mixture
of colors from 1:2 to, say, 2:1, resulting in a different color,
perhaps magenta. From the colors of these two mixtures, we
can probably deduce that the colors in cans A and B are close
to red and blue; this is analogous to estimating the altitude
parameters from multiple-observation InSAR, which can
only infer the underlying altitude distribution from multiple
mixtures. Lidar is more direct than InSAR and, in this 
analogy, lidar separately opens up each can and looks inside.

Profiles of interest to ecologists are more complex than the
two-element example, but they usually result from a model
involving a small number of parameters, depending on the
assumed profile. InSAR models are based on empirical cor-
relation (Wagner et al. 2003) or on physical descriptions of
the vegetation (Papathanassiou and Cloude 2001). The model
assumption of a uniform layer up to a maximum height
suggests estimating a tree height (one parameter) from InSAR
data. Assuming a Gaussian vegetation distribution suggests
estimating the mean and standard deviation of a vertical
Gaussian density distribution (two parameters). With 
increasing complexity in the assumed forest, the number of
parameters increases, requiring increasing interferometric
or other observations beyond the single-baseline observation.
All models usually include the altitude of the underlying
surface, the topography, as a parameter. The complexity of the
assumed distribution depends on the particular ecological
question being addressed by the profile information and 
on the type of forest observed. The multiple-polarization,
multiple-frequency, and multiple-baseline strategies described
below enable estimation of parameters in simple profile
models.

Multiple-polarization, or polarimetric interferometry.
Each unique combination of transmitted and received po-
larization yields different mixtures of the vegetation heights
represented in the total InSAR signal. By “different mixtures”
we mean adding vegetation vectors (as in figure 2) with dif-
ferent strengths or amplitudes, which depend on vegetation
density. Components of a forested landscape that have a def-
inite orientation, such as the horizontally oriented ground,
have a distinct response to each polarization combination, use-
fully augmenting the observation set. A collection of leaves
oriented in many random directions would probably induce
very similar received signals, regardless of the polarization. If
oriented, polarimetrically sensitive objects exist in the scene,
polarimetric interferometry can be used to meet criterion 2
for simple model profiles (Cloude and Papathanassiou 1998,
Treuhaft and Siqueira 2000, Papathanssiou and Cloude 2001).
Figure 3 shows the results of applying a polarimetric, uniform-
layer model to estimate tree heights, using polarimetric 
interferometry to augment the single-polarization, single-
baseline observation set (Papathanassiou and Cloude 2001).
The ground is the polarimetrically sensitive object in the
model, and the root mean square error between remote 
sensing and ground height measurements is about 2 m.

Multiple-frequency interferometry. Radar interferometric
observations at different frequencies also yield a diverse 
observation set from which profile information may be 
extracted. Models usually assume that returns from higher 
frequencies are from the top of the canopy and from smaller
objects such as leaves, while returns from the lower frequen-
cies involve a combination of the ground and larger canopy
objects such as branches or trunks.

InSAR data at two frequencies, P-band (wavelength of
approximately 70 centimeters [cm]) and X-band (wavelength
of approximately 2 cm), were taken with an airborne system
over a mature, humid tropical forest in the Brazilian Amazon
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Figure 4. Conceptual drawing showing how the vertical 
detail of profiles improves with increasing numbers of
baselines. With only one baseline, only an effective height
and width of the distribution of vegetation can be deter-
mined from phase and coherence measurements. With
two baselines, the mean height of a uniform stand can 
be discerned. With additional baselines, measurements
come progressively closer to the actual underlying canopy
profile.
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(Dutra et al. 2002), on transects 10 m ́ 100 m and 10 m ´ 250
m. These tests obtained 1- to 3-m accuracy in tree height.
Other multiple-frequency demonstrations using Geographic

Synthetic Aperture Radar, or GeoSAR, at P- and
X-band frequencies produced 1- to 2-m agree-
ment between multiple-frequency InSAR tree
height determinations and those from field mea-
surements over areas equivalent to the Amazon
study (Siqueira et al. 2003). It is uncertain whether
more complex profile parameters, as described in
the next section, can be estimated with multiple-
frequency InSAR.

Multiple-baseline interferometry. Multiple-
baseline InSAR augments the single-baseline 
observations, once again creating multiple vector
diagrams, or multiple mixtures of altitudes.
Using the same fundamental principles that 
multiple-baseline radio astronomy applied to
the structure of celestial radio sources (Thomp-
son et al. 1986), multiple-baseline InSAR can
potentially improve the accuracy of a simple
structure profile, or it can enable the introduction
of more profile parameters, describing more
complex profiles. As the number of baselines in-
creases to include a diversity of baseline lengths,
the measured structure approaches the actual
vegetation distribution, as conceptualized in 
figure 4. However, profiles corresponding to the
coarser curves of figure 4 may be sufficient for 
estimating many biophysical quantities, such 
as biomass, as suggested by figure 5 and considera-
tions in the section on ecosystem attributes. Bio-
mass estimates can result from small numbers
(1–2) of lidar statistics, potentially derivable from
coarse profile characteristics, such as the height
of median energy (HOME), as shown by Drake
and colleagues (2002) for tropical forests. For
some types of forests, the effective height pro-
duced by the single-baseline SRTM observation
may serve a function similar to HOME and may
suffice for biomass determination. Other exper-
iments with lidar (Lefsky et al. 1999) and InSAR
(Treuhaft et al. 2002) suggest that profile details
beyond effective heights are required for bio-
mass estimation. The degree to which increasing
profile complexity improves biophysical prod-
ucts has not yet been studied thoroughly. Only the 
multiple-baseline augmentation, which may 
increase hardware costs for additional baselines
(if they cannot be realized by repeat tracks), may
be able to estimate the shapes of arbitrarily com-
plex density profiles. The optimal number and
lengths of baselines, frequencies, and polari-
zations, as well as possible fusion with other sen-
sors, must be considered in the design of proposed
multiple-baseline InSAR spaceborne sensors
(Massonnet 2001).

A leaf area density, or LAD (one-sided leaf area per unit 
volume), profile was estimated for a 1-ha, multilayer plot of
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Figure 5. Remotely sensed leaf area density (LAD; square meters one-sided
leaf area per cubic meter) as a function of height above the ground, gener-
ated from parameters estimated from airborne multiple-baseline C-band
InSAR and normalized by hyperspectral leaf area indices. Data for radar
and hyperspectral curves are from Treuhaft and colleagues (2002). “R+H 
1-sigma” (dotted line) is the LAD profile generated by using values of In-
SAR and hyperspectral parameters one standard deviation away from the
nominal estimates. Field measurements are also shown, with representa-
tive vertical error bars, at the asterisks indicating low and medium heights.
(a) A multilayer plot of ponderosa pine in central Oregon, with sparse, tall
old growth and dense, short young growth. (b) A plot of ponderosa pine in
uniform, old-growth stands. The two different profiles are distinguished by
the InSAR-based remotely sensed leaf area density. Reprinted, with permis-
sion, from the American Geophysical Union.
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ponderosa pine in central Oregon from six C-band InSAR
baselines using AIRSAR (figure 5a). The stand had sparse, tall
old growth and dense, short young growth. A total of 12 in-
terferometric observations (one amplitude and phase per
baseline) (Treuhaft et al. 2002) produced the relative LAD pro-
file, that is, LAD as a function of altitude with an undeter-
mined overall normalization factor. A field-measured LAD is
also shown as the curve with vertical error bars through the
asterisks at low and medium altitude (figure 5a). A Gaussian
model profile with two parameters, the center and standard
deviation, yielded the relative densities shown in figure 5a. The
two radar and hyperspectral (R+H) curves are normalized
with parameters from hyperspectral data (discussed in the sec-
tion below on data fusion). Figure 5b shows a second stand
of ponderosa pine, but unlike the mixed-age stand of figure
5a, this stand is uniform old growth. Its field-measured leaf
area density is broad and peaked at the center of the nearly
symmetric distribution, unlike the low-altitude peak in 
figure 5a.

The R+H 1-sigma curves in figure 5 are within one stan-
dard deviation of the field measurements for much of the
range of height above ground. The remote sensing curves 
reproduce the coarse features of the field LAD and clearly 
distinguish between the two very different LAD profiles of the

mixed and uniform stand. Coarse features of the LADs for
nine other stands (not shown here) correlated well with field 
estimates of LAD and tree-height statistics. However, figure
5 also shows how a few baselines constrain InSAR to miss some
details of the profile, reminiscent of the “few-baseline”
schematic profile of figure 4. Increasing the number of base-
lines as well as addressing instrumental issues in the AIRSAR
data set potentially will improve the performance of InSAR-
based LAD. Future experiments must evaluate the trade-off
between number of baselines and vertical resolution for pro-
ducing ecosystem attributes of interest to ecologists, such as
biomass.

The only other published demonstration of microwave 
vegetation profiling is by tomography, which is related to
multiple-baseline interferometry (Reigber and Moreira 2000).
Tomographic profiles achieved with 14 different airplane
overflights in Oberpfaffenhofen, Germany, showed clear 
correlations with vegetation vertical structure features, as
well as with features of buildings and road surfaces. From
qualitative images (figure 6), the many baselines afforded by
14 overflights appear to yield a vertical resolution possibly 
better than that of figure 5—the many-baseline profiles, like
lidar profiles, were not constrained to be Gaussian.
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Figure 6. Tomographic intensity image from 14 airborne passes over a spruce forest and other objects as
noted near Oberpfaffen, Germany (upper image). Schematic representation of the forest and ground objects
(lower image). Colors in the upper image correspond to different polarization combinations in the data, and
colors in the lower image correspond to expected polarization signatures of objects. Reprinted from Reigber
and Moreira (2000), with permission. © 2000 Institute of Electrical and Electronics Engineers.



Combining InSAR with optical remote sensing
Global remote sensing of forest structure requires unam-
biguous measurements of forests with diverse canopy archi-
tectures; species; and climatic, topographic, and edaphic
conditions. Just as multiple polarizations, frequencies, and
baselines improve InSAR’s accuracy, it is likely that the fusion
of the outputs of InSAR with those of several other types of
sensors will deliver the most robust and accurate forest struc-
ture estimates. This section  suggests general considerations
and frameworks with which to envision fusion scenarios for
InSAR and optical sensors for structure monitoring. Much of
the general discussion also applies to fusion of InSAR with
other microwave sensors or ancillary data types.

While InSAR density profiles scale with biophysical quan-
tities such as vertical leaf area distribution, spectroscopic
data provide a more direct measurement of the biophysical
contents of the target, but not necessarily the vertical distri-
bution of the contents. Optical techniques also respond in
varying degrees to structural characteristics. We therefore 
propose two potential modes of fusing InSAR with optical

sensors: (1) using the complementary dependence of the
optical data on biophysical characteristics to relate the struc-
tural density profiles from InSAR to biophysical profiles,
a method we call “biophysical fusion,” and (2) using the 
optical sensitivity to structure to improve the accuracy or 
resolution of the InSAR profiles through “structural fusion.”
Spectroscopic sensors (optical sensors that acquire radiance
data for different wavelengths) favor the former and lidar 
the latter, but both may be considered for all sensors. Our 
description of biophysical and structural fusion will focus on
spectroscopic (primarily hyperspectral) and lidar remote
sensing, respectively.

Spectroscopic fusion. Imaging spectroscopy, also known as
hyperspectral imaging, is the measurement of solar radiation
reflected from the Earth’s surface in contiguous, narrow 
spectral channels spanning the wavelength region from 0.4 to
2.5 µm (micrometers). The high number of spectral channels
(> 200) allows identification of materials with overlapping,
but distinct, spectral signatures (Ustin et al. 2004). Hyper-
spectral observations can detect variation in canopy leaf area
index (LAI), with upper limits in the range of 6 to 10, through
a combination of spectral derivatives centered at the 0.97- 
and 1.2-µm regions (near-infrared) and across the 0.69- to
0.71-µm range (red; Asner 1998, Roberts et al. 1998, Ustin et
al. 1998).

Two measures of hyperspectral imaging, the reflectance and
reflectance derivative, change in response to increases in LAI
(Asner 1998), as shown in figure 7. When estimated with a
model of the hyperspectral reflectance and reflectance de-
rivative, LAI can be used to normalize the InSAR vertical
density profile. That is, the LAI from optical measurements
introduces greater biophysical meaning to the relative density
produced by InSAR. This biophysical fusion mode yielded the
LAD as a function of height above the surface of two pon-
derosa pine stands in central Oregon (figure 5; Treuhaft et al.
2002). The structural signatures in hyperspectral data can also
be used to enhance the structural information of InSAR. For
example, when a forest is disturbed, a significant amount of
nonphotosynthetic vegetation (e.g., surface litter, wood) 
and bare soils can be exposed, changing the hyperspectral 
response shown in figure 7.

Another type of spectroscopic instrument, the multiangle
imaging spectroradiometer (MISR) (Diner et al. 1998), can
conceivably contribute to a fusion scenario with InSAR.
MISR has four radiometric channels from about 0.44 to 0.86
µm and nine view angles. Structural properties have been 
inferred from MISR data (Gobron et al. 2002), and it is pos-
sible that MISR may work with InSAR in the future in some
combination of the biophysical and structure fusion modes.

Lidar fusion. As noted above, lidar and InSAR have comple-
mentary strengths, which may potentially be combined. The
lidar profiles may set limits on InSAR parameter estimation
and improve the accuracy of the broad spatial estimates 
derived with InSAR. A few very accurate lidar profiles 
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Figure 7. Calculated hyperspectral reflectance (top) and
the reflectance derivative (bottom) as a function of wave-
length for different values of leaf area index (LAI), start-
ing with 0.5 (green line) and increasing in increments of
0.5 (dashed lines) up to 8.0 (red line). Sensitivities of both
the reflectance and the derivative, primarily in each of
the gray, hatched wavelength regions (680–760 nanome-
ters [nm], 900–1050 nm, and 1100–1250 nm) are used to
estimate LAI. Other regions of the spectrum show less
sensitivity to variations in LAI beyond values of about 
1 to 2.
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sampled within the InSAR swath may reduce the number of
baselines required for InSAR spaceborne sensors.

Airborne structural fusion of InSAR and lidar yielded 
optimal coverage and accuracy in tree heights (Slatton et al.
2001). Fusion of InSAR with lidar improved the accuracy of
tree heights determined from two InSAR baselines by factors
of two to three, and meter-level accuracies resulted over 
areas of about 1 ha. Lidar was flown in multiple strips over
these areas, with a few-meter spot size. Demonstrations of the
optimal modes of combining InSAR and lidar for full profiles
do not yet exist.

Ecosystem attributes from vegetation profiles
We have established that InSAR’s vertical profiles of vegeta-
tion can be enhanced in combinations with other sensors. Here
we discuss other ecosystem attributes that can be estimated
from these profiles. For example, within a canopy, the verti-
cal distribution of foliage determines the pattern of light
availability, controlling processes such as leaf development,
leaf energy balance, water use, photosynthesis (Norman and
Campbell 1991, Ellsworth and Reich 1993), and carbon and
nutrient cycling within ecosystems. Radiative transfer mod-
els characterize the effects of canopy structure on diffuse
and direct radiation and thus photosynthetic efficiency, which
can affect the rate of carbon uptake by vegetation (Law et al.
2001). Some physiological process models require structural
profiles to simulate the soil–vegetation–atmosphere exchange
of carbon dioxide and water vapor by means of photo-
synthesis, evapotranspiration, and respiration (Williams et al.
2001). Such models quantify changes in productivity and
carbon storage with interannual variation in climate, growth
stage, and disturbance. Vertical profiles of vegetation can
also be useful for investigating the biological diversity of
plants and animals in relation to structural diversity or 
productivity.

The 3-D remote sensing of structure prompts investigation
of the dependence of biomass on structural parameters.
Allometric relations currently being explored,which relate bio-
mass to 3-D structural information from InSAR and lidar, may
ultimately be robust for global biomass monitoring (Lefsky
et al. 1999, Drake et al. 2002, Treuhaft et al. 2003). As an 
example, biomass estimates for 11 stands of ponderosa pine,
grand fir, and larch resulted from remotely sensed LAD 
(figure 5) in central Oregon (Treuhaft et al. 2003). Rather than
relate biomass to tree height and diameter, as is done with field
measurements, new allometrics, which are functions of LAI
and the mean and standard deviation of the InSAR-derived
density distribution, were used to determine biomass (figure
8). The field estimates are plotted against the best-fit remote
sensing estimates of biomass. The scatter of remote sensing
estimates about field estimates is 25 megagrams (Mg) per ha,
or about 16% of the average stand biomass, for stands up to
300 Mg per ha, showing no signs of the “saturation” at about
100 Mg per ha usually associated with C-band power biomass
estimation. The 25 Mg-per-ha scatter is competitive with
some of the best published biomass results from lidar (about

20 Mg per ha for biomasses up to 250 per ha) (Drake et al.
2002). The scatter is dominated by field measurement error
of about 15% and far exceeds the 45-Mg-per-ha perfor-
mance of C-band power-based biomass estimates from the
same data set. InSAR’s direct sensitivity to structure accounts
in part for the improved biomass performance.Additionally,
at high biomasses, InSAR is not nearly as prone to the bio-
mass saturation phenomenon as radar power, because of its
signal and noise characteristics (Treuhaft and Siqueira 2004).

Prospects for global InSAR forest monitoring
As a new application to forest profiling, InSAR shows promise
for enabling 3-D microwave remote sensing of forests, which
may improve our understanding of the carbon cycle and
other forest ecological processes. InSAR produces tree height
measurements as well as LAD, in concert with hyperspectral
data, and both LAD and derived biomass estimates are criti-
cal to understanding vegetation dynamics and global carbon
sequestration. Spaceborne interferometry can operate in all
weather conditions, sampling swaths up to 80 km, providing
vertical structure measurements with 0.25-ha to 1-ha lateral
resolution. The InSAR coverage for heights or full profiles is
orders of magnitude better than proposed or flying spaceborne
lidars.

InSAR meets two proposed criteria of sensitivity and 
estimability of vertical structure; however, InSAR satisfies
the latter criterion only with multiple-polarization, multiple-
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Figure 8. Field-measured biomass versus biomass from leaf area
density profiles (such as figure 5) from InSAR, normalized by
hyperspectral data. The scatter about the y = x line is 25 mega-
grams per hectare, or about 16% of the average biomass. Two
parameters were adjusted to fit the remotely sensed biomasses
to the field biomasses. Although two parameters were 
estimated from 11 observations, accuracy is highly significant,
with greater than 99.5% confidence. Reprinted from Treuhaft
and colleagues (2003), with permission from the American 
Geophysical Union.



frequency, or multiple-baseline data, the last of which can 
estimate full vegetation profiles (as opposed to vegetation
heights). Multiple-polarization or multiple-frequency sys-
tems will probably best deliver tree height. Multiple-baseline
InSAR produces complete profiles, but for small numbers of
baselines, InSAR’s full-profile vertical accuracy is coarser
than that of lidar, which is a more direct measurement of the
vertical distribution of forest vegetation. Hyperspectral or mul-
tispectral or possibly multiangle optical observations, com-
bined with InSAR, lend more biophysical meaning to InSAR
relative density profiles, and they can also improve the accu-
racy of structure estimates. Combining InSAR’s potential as
a gapless global monitoring tool with that of sparse but highly
accurate spaceborne lidar profiles may constitute an optimal
data fusion strategy for global 3-D forest structure.

Future spaceborne InSAR profiling missions will probably
require multiple baselines (Massonet 2001) and possibly
multiple polarizations and frequencies.Airborne InSAR and
optical experiments over diverse forest types, along with 
accurate field measurements, will supply ecologists with the
scope of possibilities for global 3-D forest monitoring. From
these possibilities, the needs and applications for profiles, as
articulated by ecologists, can then substantially guide future
InSAR spaceborne designs.
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